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FOREWORD
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Contract F33615-72-C-2149, Flight Dynamics Laboratory Project
Number 486U, "Advanced Metallic Structures: Air Superiority
Fighter Wing Design for Improved Cost, Weight and Integrity."
Mr. Lawrence R. Phillips of AFFDL is the Air Force Project
Engineer.

These studies were performed by the Structural Design Group,
Convair Aerospace Division of General Dynamics, Fort Worth Oper-
ation with D. F. Davis as the Program Manager. Other principal
participants in the program are as follows: R. W. McAnally,
Structural Design; E. W. Gomez, Stress Analysis; J. W. Morrow,
Fatigue and Fracture Analysis; J. M. Shults, Materials Engineer-
ing; T. E. Henderson, Mass Properties; J. D. Jackson, Value
Engineering; J. L. McDaniel, Manufacturing Engineering; B. G. W.
Yee, Nondestructive Inspection; D. Duncan, Quality Assurance;
H. E. Bratton, Information Transfer; and R. L. Jones, Engineer-
ing Test Laboratory.

The work was performed from June 1972 to June 1973 and was
released for publication June 1973.

This report has been reviewed and is approved.

JOHN C. FRISHETT, Major, USAF
Program Manager, AMS Program Office
Structures Division
Air Force Flight Dynamics Laboratory
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A B S T R A C T

This report describes the preliminary design and
analysis for an Advanced Air Superiority Fighter Stores
Loaded, Wet Wing Structure. The wing box of the F-111F
airplane designed by the Convair Aerospace Division of
General Dynamics was used as the baseline vehicle.

A unique design methodology was followed to arrive
at three configurations which offer an optimum balance
between structural efficiency and technological advancement.
This methodology consists of compiling element concepts;
integrating them into cross-section drawings; optimizing
them in analytical assemblies; and finally preparing full
wing box designs. Each step was followed with a detailed
evaluation and ranking step which utilized a formal merit
rating system. This system permitted the evaluation of
numerous concepts and insured that each technical discipline
participated in the design selection.

A subsequent program is proposed to evaluate the
capability of the selected design to meet the overall
program goals of advancing technology without significantly
affecting costs. The subsequent program involves additional
preliminary design, a development test program, detail design,
manufacture, and tests; including static, fatigue, and damage
tolerance testing. Information generated during this effort
will be disseminated to the Air Force and industry in general
through an intensive information transfer effort.
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APPENDIX V

S T R E S S A N A L Y S I S

V.1 FLIGHT TEST WING LOADS

This section presents the portion of results of the
flight loads buildup and demonstration tests for the F-ll
with no external stores as applicable to the F-111F wing.
The entire test program results are reported in Reference 1.
These balanced symmetric flight tests were accomplished on
F-l11A No. 13 and F-l1A No. 75. These tests were accomplished
to establish the maximum load levels encountered in flight.
The ultimate objective of such testing is to show that the
loads used for design and the loads applied in static test
are adequate.

V.1.1 Background

The initial flight loads program for the F-111 is out-
lined in Reference 2. It was developed to meet MIL-S-5711
requirements for a flight loads survey and demonstration.
Flight testing, based on that program, began in July 1967and continued through February 1968. At that time, the test
airplane (F-l1A No. 13) went into down-time for extensive
structural rework to bring it up to the production configu-
ration.

In November 1968, during the "F-111A/E/D Structural
Integrity Reconsideration Meeting" at the SPO, General Dynamics
was directed to reduce program costs by realigni g the struc-
tural integrity flight program. The new program was to be abuild-up demonstration in lieu of the Flight Loads Survey and
Demonstration. An analytical survey rather thi.n a Elight loads
survey would be relied on to define load trends and to select
critical maneuvers and wing sweeps for demonstration. A fc4noncritical conditions were to be flown to verify the ani'ysis
which led to the prediction of critical conditions. The SPO
position was that sufficiently accurate loads can be derived
less expensively on the ground. The flight program is then
aimed at proving the loads for the predicted critical conditions
are no greater than those used for design.

At that time, General Dynamics was "tooling-up" for a
complete F-111D analytical loads survey. It was to be based
on all available F-111 wind tunnel data and would conta-n a
complete set of basic aerodynamic coefficients along with
matching airload distributions. The inertia data used would
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also include matching panel point distributions so that final
net loads would result in a "balanced airplane" for each con-
dition analyzed. The net load trends resulting from such an
analysis would provide the analytical baseline desired for
establishing the new flight loads program. This analytical
loads survey, although specifically being conducted for the
F-111D, would be directly applicable to th6 F-111A for the
purpose of selecting demonstration, validation, and build-up
conditions. Thus the new program definition is based on F-111D
maneuver analysis load trends supplemented by data gathered
during the early flight loads survey.

The initial phase flight loads survey results and the
F-111D analytical predictions show that balanced symmetric
maneuvers develop the maximum load magnitudes on the wing and
high lift devices. The survey results supplemented by the
analytical predictions were the basis for selection of test
points for these components. Demonstration maneuvers were
flown at the predicted critical conditions to define peak
load magnitudes. In addition, several non-demonstration
(lower load level validation type) maneuvers were performed at
different points to confirm that the maneuvers selected for
demonstration are at the critical conditions. Table I shows
a summary of the balanced symmetric maneuver critical con-
ditions.

V.1.2 Flight Loads

A discussion of flight loads is presented in the following
paragraphs.

V.1.2.1 Loads Measurement Methods

Flight loads data on the F-1ll aircraft are acquired by
means of calibrated strain gauge bridges installed on the
wing, fuselage, and vertical and horizontal tails. Shear,
bending moment, and torsion are measured at four spanwise
stations on the right-hand wing outer panel and at the right-
hand and left-hand pivot center line by means of instrumenta-
tion installed on the pivot support structure as illustrated
in Figure 1. All strain gauge bridges are located in such a
manner to provide the required measurement accuracy with
minimum effect due to concentrated load effects, stress con-
centrations, or thermal strains. Prior to instrumenting the
flight test wing, a development test was conducted in which
a stub wing specimen was instrumented and loaded at both room
temperature and transient heating conditions to verify the

2


